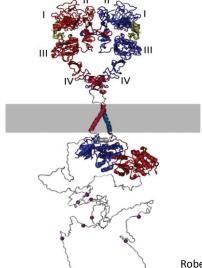

Прогностическое и предиктивное значение различных мутаций гена EGFR и новые решения таргетной терапии

Демидова И.А., лаборатория молекулярной диагностики МГОБ №62 Москва

Современные рекомендации (CAP-IASLC-AMP 2013, аналогично- рекомендации ESMO и RUSSCO) по исследованию мутаций гена EGFR и перестроек ALK

- Рекомендовано обследование всех больных с неплоскоклеточным НМРЛ без учета клинических и демографических данных
- Анализ назначается пациентам с распространенными формами болезни или при прогрессировании
- При выявлении мутаций таргетные препараты должны быть назначены в первой линии терапии
- Исследование мутаций гена EGFR должно иметь приоритет перед всеми остальными генетическими маркерами при НМРЛ (доказательность I степени, или уровень A)

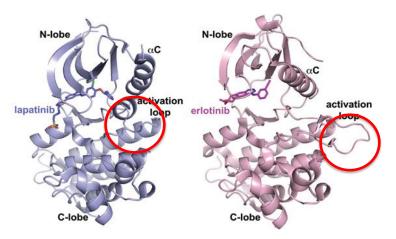
Lindeman et al, J Thor Oncol Feb 2013



Что еще мы знаем о них, но редко вспоминаем?

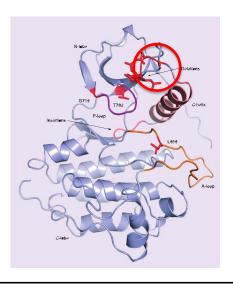
- В различных базах данных зарегистрировано более 250 видов мутаций 18-21 экзонов *EGFR* при НМРЛ. Более 60% из них обнаруживались однократно (артефакты?)
- Сложные мутации (сочетание двух и более мутаций 18-21 экзонов) довольно редки (не более 5%), эффект ингибиторов изучен плохо (кроме сочетаний с T790M)
- Известны также принципиально другие типы мутаций, встречающиеся в том числе и при НМРЛ делеции 2-7 экзонов *EGFR* (EGFR viii) (практически нечувствительны к ингибиторам)и делеции 25-27 экзонов (EGFR-CTD deletions) (чувствительны к анти-EGFR Mabs).

Murray S et al, J Thor Oncol, 2008, Weeler et al, Oncogene 2010, Park et al Oncotarget 2015


Структура рецепторов семейства ERBB - ERBB1(EGFR)

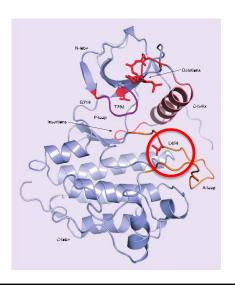
- EGFR (ERBB1) представляет собой протеин размером 170kDa (1186 аминокислот)
- Внеклеточная часть домена состоит из 4 субдоменов, участвующих в связывании лиганда и димеризации (процессы для EGFR автономны)
- Трансмембранная часть также участвует в димеризации
- Тирозинкиназный домен расположен внутриклеточно и его функция – связывание АТФ и дальнейшая передача сигнала белкам субстрата

Roberts K, Biochem Soc Trans 2012 Kumar, A, JCO 2008


Как активируется протеин в норме?

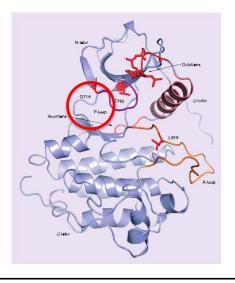
Присоединение активирующего субстрата (лиганда) изменяет конформацию протеина, освобождая «активирующую петлю» и делает возможным связывание энергетической молекулы (АТФ) со структурами связывающего кармана

Yasuda et al Lancet Oncol 2012; 13: e23-31


Каким образом мутации активируют протеин?

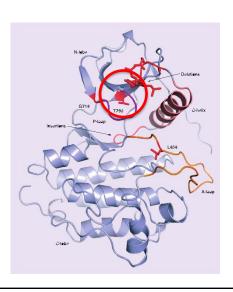
- Делеции 19 экзона убирают 3-9 аминокислот в α -петле вблизи АТФ-связывающего кармана, меняя его конфигурацию на приближенную к активированной и приводя к предпочтительному связыванию с ИТК, а не с АТФ, при этом K_M АТФ самая высокая
- Разная чувствительность разных делеций (разная степень фосфорилирования Y1092)?

Reguart and Remon Future Oncology 2015, Carey Canccer Res 2008, Kaneda, Lung Cancer 2014


Каким образом мутации активируют протеин?

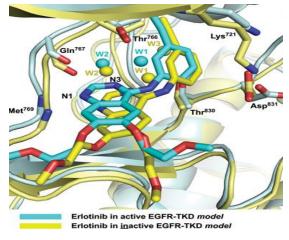
- Мутация L858R в 21 экзоне представляет собой замену маленького гидрофобного лейцина на крупный высокополяризованный аргинин, что приводит к нарушению конформации активационной петли, потере гидрофобной «оси» и нестабильности АТФсвязывающего кармана
- Степень дефосфорилирования на фоне ИТК ниже, чем при del19 (практически не снижается в Y845)

Reguart and Remon Future Oncology 2015


Каким образом мутации активируют протеин?

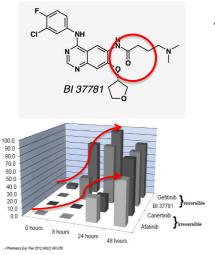
- Мутация G719X в 18 экзоне расположена в богатой глицином зоне (фосфат-связывающей петле), замена глицина на другую аминокислоту нарушает способность АТФ-связывающего кармана поддерживать неактивную конформацию
- Однако тропность к ИТК существенно меньше

Kumar et al, JCO 2008


Каким образом мутации активируют протеин?

- Мутации 20 экзона отличаются большим разнообразием в зависимости от локализации
- Т790М –gatekeeper -приводит к восстановлению аффинности к АТФ
- Инсерции, расположенные до Меt766 потенциально чувствительны, их влияние похоже на L858R, расположенные далее – меняют конформацию киназы в конце С-петли, не влияя на АТФ-связывающий карман, поэтому нечувствительны к ИТК

Yasuda, Sci Transl Med 2013


Возможно ли связывание ингибиторов I класса с рецептором без мутаций ТК домена (неактивным)?

- Взаимодействие ИТК I с неактивным рецептором осуществляется с участием тех же Т766, G767, T830
- Однако К_м для ИТКІ превышает К_м АТФ почти в 25 раз

Park Biochem J 2012

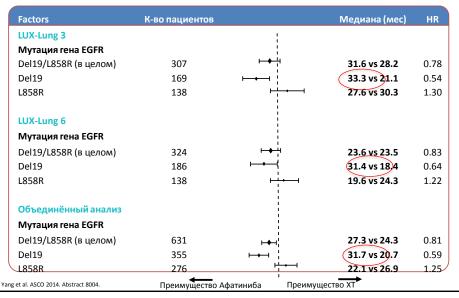
Чем отличается действие обратимых и необратимых ингибиторов?

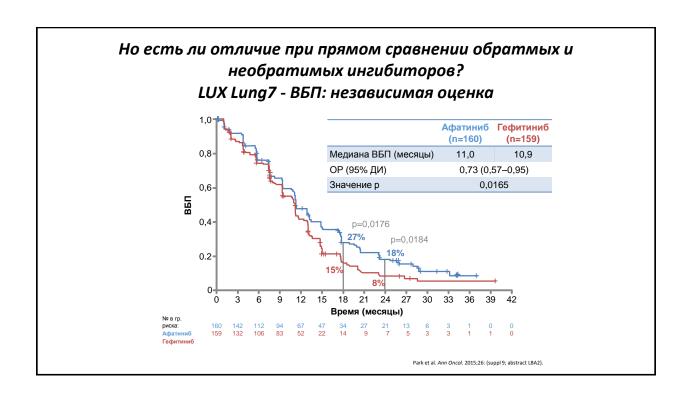
• В результате добавления к молекуле ингибитора электрофильной группы возникает прочная нековалентная связь с цистеином 797 в АТ-связывающнм кармане. Гидролиз необратимого ингибитора происходит гораздо медленнее связь с рецептором сохраняется дольше

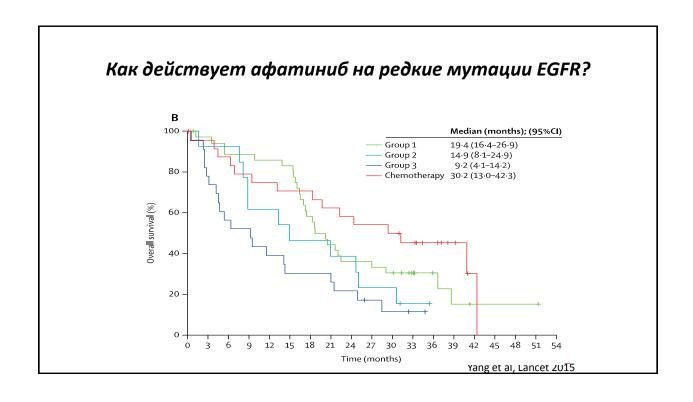
Solca et al J Parmacology Exp Therapy 2012

Как различный механизм действия мутаций влияет на чувствительность к ингибиторам in vitro?

50% ингибирующие концентрации (IC₅₀) обратимых ингибиторов (гефитиниб, эрлотиниб) и необратимого ингибитора (афатиниб), необходимых для контроля роста клеток культур опухоли


Ингибитор	EGFI	R WT	T EGFR		3R	EGFR L858R + T790M	EGFR del19		9	EGFR del19 + T790M
	LoVo	A431		H3255		H1975 <i>T790M+</i>		PC9		PC9 VanR <i>T790M+</i>
Афатиниб	15	28		0.9		22		0.6		3
Гефитиниб	59	73		11		3102		7	1	741
Эрлотиниб	91	250		9		6073		6		1262
Cross DA <i>Cancer Discov.</i> 4(9), 1046–1061 (2014)										


Как результаты клинических исследований отражают различную активность мутаций?


Исследования III фазы при НМРЛ с частыми мутациями гена EGFR:
выживаемость без прогрессирования в зависимости от мутации
(лечение ИТК)

Исследование	Все частые мутации; n BБП; HR; <i>P</i> -value	Del19; n; ВБП; HR; <i>P</i> -value	Exon 21; n ВБП; HR; <i>P</i> -value			
	130 пациентов	66 пациентов	64 пациента			
IPASS	Не представлено	11.0 мес. НR 0.38	9.2 мес. HR 0.55			
	86 пациентов	57 пациентов	29 пациентов			
EURTAC	9.7 mec. HR 0.37; <i>P</i> <0.0001	11.0 мес. HR 0.3; <i>P</i> <0.0001	8.4 мес. HR 0.55; <i>P</i> =0.0539			
	204 пациента	113 пациентов	91 пациент			
LUX-Lung 3 ^a	13.6 мес. HR 0.47; <i>P</i> =0.001	13.7 mec. HR 0.28; <i>P</i> =0.01	10.8 mec. HR 0.73; <i>P</i> =0.01			
	82 пациента	43 пациента	39 пациентов			
OPTIMAL	13.1 мес. HR 0.16; <i>P</i> <0.0001	15.3 мес. HR 0.13)	12.5 мес. HR 0.26			
	216 пациентов	124 пациента	92 пациента			
LUX-Lung 6 ^a	13.7 mec. HR 0.25	13.7 mec. HR 0.20	9.6 mec. HR 0.32			
	110 пациентов					
ENSURE	11.0 мес. HR 0.34: <i>P</i> <0.0001	11.1 мес. HR 0.20	8.3 мес. HR 0.57			

LUX-Lung 3 и 6: общая выживаемость в подгруппах пациентов с частыми мутациями

Насколько мы можем учесть другие биологические факторы?

- Наличие клона с первичной мутацией Т790М или другими мутациями резистентности?
- Амплификация EGFR и cMET
- Экспрессия других генов, ассоциированных с резистентностью (*BRCA&BIM*)?
- Степень гетерогенности опухоли?

Какие можно сделать выводы?

- Как обратимые, так и необратимые ингибиторы тирознкиназ эффективно работают при активирующих мутациях *EGFR*, повышающих чувствительность к ИТК
- Особенно эффективны препараты при делециях 19 экзона, особенности применения при мутации в 21 экзоне (L858R) требуют дальнейшего изучения
- Необратимый ингибитор афатиниб показал наилучшие результаты общей выживаемости для пациентов с делецией 19 экзона (медиана более 30 месяцев) по результатам исследований LUX-Lung и 3 LUX-Lung-6